
UCRL-JC-133213 
PREPRINT 

Experience with Mixed MPVThreaded 
Programming Models 

J. May 
B.R. de Supinski 

This paper was prepared for submittal to the 
High Performance Scientific Computation with Applications 

Las Vegas, NV 
June 28-J&y I,1999 

April 1,1999 

This is a preprint of a paper intended for publication in a journal or proceedings. 
Since changes may be made before publication, this preprint is made available with 

. 

the understanding that it will not be cited or reproduced without the permission of the 
author. 



DISCLAIMER 

This document was prepared as an account of work sponsored by an agency of 
the United States Government. Neither the United States Government nor the 
University of California nor any of their employees, makes any warranty, express 
or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise, does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States 
Government or the University of California. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States 
Government or the University of California, and shall not be used for advertising 
or product endorsement purposes. 



Experience with Mixed MPI/Threaded Programming 
Models* 

John M. May Bronis R. de Supinski 
johnmay@llnl.gov bronis@llnl.gov 

Center for Applied Scientific Computing 
Lawrence Livermore National Laboratory 

7000 East Avenue, L-561 
Livermore, CA 94550 

1 Introduction 
A shared memory cluster is a parallel com- 
puter that consists of multiple nodes con- 
nected through an interconnection network. 
Each node is a symmetric multiprocessor 
(SMP) unit in which multiple CPUs share 
uniform access to a pool of main memory. 
The SGI Origin 2000, Compaq (formerly 
DEC) AlphaServer Cluster, and recent IBM 
RS6000/SP systems are all variants of this ar- 
chitecture. 

The SGI Origin 2000 has hardware that al- 
lows tasks running on any processor to access 
any main memory location in the system, so 
all the memory in the nodes forms a single 
shared address space. This is called a nonuni- 
form memory access (NUMA) architecture be- 
cause it gives programs a single shared address 
space, but the access time to different mem- 
ory locations varies. In the IBM and Com- 
paq systems, each node’s memory forms a sep- 
arate address space, and tasks communicate 
between nodes by passing messages or using 

*This work was performed under the auspices of the 
U.S. Department of Energy by Lawrence Livermore 
National Laboratory under contract number W-7405- 
Eng-48. UCRL-JC-133213.ext-abs. 

other explicit mechanisms. 

Many large parallel codes use standard MPI 
calls to exchange data between tasks in a par- 
allel job, and this is a natural programming 
model for distributed memory architectures. 
On a shared memory architecture, message 
passing is unnecessary if the code is written to 
use multithreading: threads run in parallel on 
different processors, and they exchange data 
simply by reading and writing shared memory 
locations. 

Shared memory clusters combine architec- 
tural elements of both distributed memory 
and shared memory systems, and they support 
both message passing and multithreaded pro- 
gramming models. Application developers are 
now trying to determine which programming 
model is best for these machines. This paper 
presents initial results of a study aimed at an- 
swering that question. We interviewed devel- 
opers representing nine scientific code groups 
at Lawrence Livermore National Laboratory 
(LLNL). All of these groups are attempting to 
optimize their codes to run on shared memory 
clusters, specifically the IBM and DEC plat- 
forms at LLNL. This paper will focus on ease- 
of-use issues. We plan in a future paper to 



analyze the performance of various program- 
ming models. 

Section 2 describes the common program- 
ming models available on shared memory clus- 
ters. In Section 3 we briefly describe the ar- 
chitectures of the IBM and DEC machines at 
LLNL. Section 4 describes the codes we sur- 
veyed and the parallel programming models 
they use. We conclude in Section 5 with a 
summary of the lessons we have learned so far 
about multilevel parallelism. 

2 Parallel models 

MPI [9] is widely used on distributed mem- 
ory parallel computers, and it also works on 
shared memory machines. A simple way to 
run a parallel program on an SMP cluster is 
to treat each processor as if it were a sepa- 
rate compute node with its own private pool of 
memory. Processes exchange data by passing 
messages even when they could share memory 
directly. We call this the “MPI-everywhere” 
model. 

For applications running on a shared mem- 
ory system, programmers can choose among 
several kinds of multithreading. Pthreads [6] 
and other explicit threading models offer max- 
imum flexibility, but they require program- 
mers to create and synchronize threads explic- 
itly. Although the Pthreads library is available 
on most parallel computers, minor differences 
between versions of the standard sometimes 
cause compatibility problems. Parallelization 
directives, like those in OpenMP [S], focus on 
loop-level parallelization and are easier to use 
than Pthreads. Easiest of all are parallel math 
libraries, which use threading internally to im- 
plement common operations like the Fourier 
transform. 

In an SMP cluster, programmers can use 
MPI alone, or they can combine it with mul- 
tithreading: the code within a node can use 
thread-based parallelism, and nodes can com- 
municate with each other using MPI. We 

call this combination a mixed programming 
model. In NUMA machines, applications can 
use multithreading alone and avoid MPI en- 
tirely. There are other models for multithread- 
ing and for combining threads with message 
passing; however none of the codes we sur- 
veyed uses them, so we won’t describe them 
here. 

3 SMP clusters at LLNL 

The codes described in this paper run mainly 
on two architectures at LLNL. One of these 
is the IBM Tech Refresh machine built for 
the Accelerated Strategic Computing Initia- 
tive (ASCI). At the time these codes were sur- 
veyed, the system included 168 four-way SMP 
nodes. The current system has twice as many 
nodes and is called the Combined Tech Re- 
fresh (CTR) system. IBM supports two forms 
of message passing in this system: User Space 
(US) communication offers high communica- 
tion bandwidth and low latency, but at the 
time of our initial study only one MPI pro- 
cess could run on each node in User Space. 
Internet Protocol (IP) communication allows 
all the processors in the system to run sep- 
arate MPI tasks, but the communication la- 
tency and bandwidth are poorer than they are 
in US mode. Thus, users had to choose be- 
tween a simpler MPI-everywhere communica- 
tion model with poor communication perfor- 
mance and a mixed MPI/threads model with 
better communication performance. New IBM 
system software eliminates this dilemma by al- 
lowing four MPI tasks per node to communi- 
cate in US mode. However the total number 
of MPI processes in a US mode job cannot ex- 
ceed 1024. Therefore, the very largest jobs on 
the CTR system cannot run MPI everywhere 
in US mode. 

The other kind of system is a cluster of Al- 
phaservers. LLNL has several of these clus- 
ters. A typical configuration has eight nodes, 
and each node has eight to twelve Alpha pro- 

2 



cessors, for a total of 80 processors. The nodes 
are connected by Memory Channel, and MPI 
jobs can run over the entire system. 

4 Mixed models 

We surveyed nine mixed-model codes for this 
study. They all use MPI for message pass- 
ing. Eight of the nine also use multithread- 
ing. The ninth is still experimenting with var- 
ious techniques for threading. The threading 
techniques fall into three categories: loop par- 
allelization directives, explicit threading, and 
multithreaded libraries. The following subsec- 
tions describe how each technique was used. 

4.1 Parallelization directives 

Three of the codes we surveyed use directives. 
These are statements added to a program that 
have the format of comments but that some 
compilers can recognize as requests to paral- 
lelize the code in a certain way. Typically, 
directives appear just before loop statements, 
and if the compiler detects no dependencies 
between loop iterations, it will automatically 
generate code to parallelize the loop. Direc- 
tives can also tell the compiler how to share 
data between threads and what portions of 
the loop should not be parallelized. Com- 
piler vendors have offered directives for many 
years. Although the form of directives varies 
among compilers, their functionality is simi- 
lar. Switching between directive types is rel- 
atively easy. Many parallelizing compilers are 
now adopting a standard set of directives for 
C, C++, and Fortran called OpenMP. 

The Ares hydrodynamics code, written in 
C, is typical of how directives are used. It 
works on regular block-structured meshes, and 
it uses MPI message passing. The code was 
designed to use domain overloading, a tech- 
nique that decomposes the mesh into more 
domains than there are processors. Each pro- 
cessor computes on several domains, one af- 

ter another. The technique was developed 
to improve cache utilization and load balanc- 
ing, but it also simplified thread paralleliza- 
tion. The code has computation phases sep- 
arated by communication phases, and within 
each computation pha,se, an outer loop iter- 
ates over the domains assigned to each process. 
The first multithreaded implementation used 
Pthreads. Domains were assigned to threads 
within a process, and computation could pro- 
ceed on separate domains in parallel. After 
each computation phase, a single thread would 
manage MPI communication to exchange data 
between the nodes. 

Since the number of threads remained the 
same from one compute phase to the next, 
the developers initially implemented a thread 
pool, in which a set of threads was spawned 
in each task at the beginning of the program, 
and work was assigned to the same collec- 
tion of threads throughout the execution of 
the program. The purpose of the thread pool 
was to avoid the cost of repeated thread cre- 
ation and termination. However, managing 
this pool was complicated, and there was lit- 
tle performance benefit because the cost of 
creating a thread was small compared to the 
cost of computation. Overall, the Ares de- 
velopers found the Pthreads model awkward. 
When compilers supporting parallelization di- 
rectives became available, it was a simple mat- 
ter to replace the Pthreads calls with a paral- 
lelized loop over the domains. Using directives 
greatly simplified the code, making it easier 
to maintain with no significant loss of perfor- 
mance. 

Another C-language hydrodynamics code, 
this one with an unstructured mesh, also uses 
parallelization directives for domain loops. In 
addition, it uses directives to parallelize loops 
that compute the interactions between contact 
surfaces. These loops do not iterate over the 
domains but rather over large-grained subsets 
of the contact surface work. Several such loops 
were parallelized individually. The group de- 
veloping this code noted the Ares experience 

3 



with Pthreads and moved directly from MPI- 
everywhere parallelism to MPI with directives. 

A third directive-based code, written in For- 
tran 90, computes photon transport on an un- 
structured mesh. Like Ares, this code ini- 
tially used Pthreads but later switched to di- 
rectives. The computation can be decomposed 
for parallelism (singly or in combinations) over 
the three spatial dimensions of the transport 
medium, over energy groups, or over sweep an- 
gles. The spatial domain is distributed over 
nodes and uses MPI communication. Within 
each process, the code is parallelized on the 
outer loop, which iterates over sweep angles. 
This loop encapsulates more than 90% of the 
CPU time for the code. The computational 
work can be done in parallel, but for cer- 
tain classes of problems the order of evalua- 
tion of individual angles is important-an in- 
correct ordering can lead to more iterations 
per code cycle before the convergence crite- 
ria are met. The code formerly distributed 
energy groups over MPI tasks, but it was re- 
structured to place a loop over energy groups 
within the outer loop that computes over each 
angle. This greatly improved the cache per- 
formance, since the energy groups for each an- 
gle could be batched together. The developers 
of this code worked hard to eliminate depen- 
dencies between loop iterations. The code has 
only one Open MP directive placed on the an- 
gle loop, but restructuring the code to safely 
expose this parallelism required significant ef- 
fort. 

4.2 Explicit threading 

Directives work well for codes with loop-level 
parallelism, but many threaded codes have a 
task-parallel structure that doesn’t fit the di- 
rective model. These applications require the 
flexibility of explicit threading. Four codes 
we surveyed use explicit threading; of these, 
three use Pthreads and a fourth uses a custom 
thread library. 

Ardra [3] is a C-language three-dimensional 

neutral particle transport code that uses a 
block structured mesh. The mesh is statically 
mapped to a 3-D processor layout. The com- 
pute time is divided nearly evenly between a 
harmonic projection phase that is easily par- 
allelized and a more complicated sweep phase. 
A sweep phase is a sequential pass through 
the mesh, and the code makes these passes in 
several directions (e.g., 80 directions for an Ss 
angular approximation). Boundary conditions 
may create dependencies between sweeps, but 
at least some sweeps can proceed in parallel. 

To maximize parallelism, Ardra uses a data 
driven model for both message passing and 
multithreading. Each MPI process posts non- 
blocking receive requests. When data from an- 
other process arrives, it is added to a queue. 
When the process is ready for more work, 
it finds the next angular direction whose de- 
pendencies have all been satisfied and carries 
out that sweep. The program uses Pthreads 
within a process to replicate this data-driven 
model on a smaller scale. Each thread works 
autonomously, scanning an incoming work 
queue and carrying out computations. The 
Ardra group initially tried using a thread pool, 
but they removed it because it didn’t improve 
performance significantly. 

The sPPM [I] code simulates three- 
dimensional gas dynamics in a regular grid. It 
is written in C and Fortran. The grid is decom- 
posed in three dimensions over MPI processes. 
Each thread updates a number of subdomains, 
which are managed on a work queue. One 
thread in each process exchanges large slabs 
of data with its nearest neighbors using non- 
blocking message passing. This communica- 
tion is overlapped with the computation that 
all the threads are doing. By starting the ex- 
changes as early as possible and waiting for 
their completion as late as possible, the code 
avoids most synchronization delays for large 
problem sizes. 

sPPM was carefully optimized, and pro- 
gramming ease was secondary to performance. 
The code could potentially use compiler direc- 

4 



tives, but the developers believe that explicit 
threads give slightly better performance. They 
used low-level synchronization primitives in 
place of Pthread locks for the same reason. 
The code also uses a thread pool; unlike other 
codes groups, the sPPM project is willing to 
tolerate the extra complexity to reap any avail- 
able performance gain. 

The Semi-Coarsening Multigrid (SMG) [4] 
solver is a linear solver written in C. It ini- 
tially used Pthreads and has since abandoned 
that model. In SMG, the problem domain 
is decomposed over MPI processes, and t.he 
threaded version of the code further decom- 
posed each domain for a series of one- to 
three-level loops. Although the decomposi- 
tion was static, the subdomains were assigned 
to threads dynamically as the threads com- 
pleted preceding tasks. The code used a pool 
of threads that were spawned once and reused 
for each nest of loops. The performance of 
this model was disappointing, and the code 
was difficult to debug. The developers are cur- 
rently experimenting with simpler threading 
models that they hope will also yield better 
performance. 

The final project that uses explicit thread- 
ing is Overture [a]. Overture is not a specific 
application but rather a C++ code framework 
designed for problems that involve adaptive 
mesh refinement, moving meshes, or overlap- 
ping grids used for complex geometries. The 
framework consists of many parts, and the 
Overture team has experimented with threads 
at several levels. The most effective use of 
threads has been for task-level parallelism. 
Multiple threads can independently work on 
separate patches of a grid. Overture uses the 
thread interface in the Tulip class library [lo]. 
The Overture developers prefer Tulip for its 
object-oriented programming model and bet- 
ter performance than Pthreads. Tulip can en- 
capsulate many different thread libraries, in- 
cluding Pthreads and system-specific thread 
libraries. The Overture team found that Tulip 
threads calling system-specific thread libraries 

were more efficient than Pthreads. 

4.3 Threaded libraries 

The only code we surveyed that uses a 
threaded math library is JEEP [5]. JEEP is a 
C and C++ molecular dynamics Code. It com- 
putes molecular interactions at a quantum- 
mechanical level, solving the Schr6dinger 
equation at each time step. JEEP com- 
bines message passing parallelism with calls 
to a threaded math library (ESSL [7]) on 
the IBM platform. The message passing por- 
tion of the code is parallelized over electronic 
states, with each process assigned one or more 
states. Computing each state requires sev- 
eral Fourier transforms, and ESSL uses mul- 
tithreading to parallelize this part of the com- 
putation. Adding multithreading to a code in 
this way is very simple, but Amdahl’s Law lim- 
its the available gains. 

5 Results and future work 

We have presented three general techniques for 
combining threaded programming with mes- 
sage passing. For codes that can use loop- 
level parallelization, directives are much eas- 
ier to use than explicit threading. Only one 
surveyed code, which demanded the very high- 
est performance, uses Pthreads in a situation 
where directives would also work. Although 
directives are easy to use, there were problems 
with some OpenMP compilers. Not all of them 
initially supported the full OpenMP standard, 
and some users had trouble determining the 
appropriate compile-time options. 

The codes that use explicit threading have a 
task-oriented model of parallelism rather than 
a loop-oriented model. A task-oriented model 
is a poor match for directives because it builds 
a work queue incrementally, whereas directives 
generally require a complete description of the 
work upon entry to the loop. The sPPM code 
could be adapted to either model because the 

5 



tasks all take about the same amount of time 
and can be done in a predictable order. In 
Ardra, the programming model is clearly a 
task queue because the optimal order of ex- 
ecution is less predictable. 

The code teams that experimented with 
thread pools have almost all been disap- 
pointed. The pools did not greatly improve 
performance, and only the sPPM project was 
willing to incur the extra complexity. 

The time needed to adapt codes to use 
threads varied from a day or so to many 
months. The variation reflects several things: 
the time needed adapt the code to use thread- 
ing (codes with loops that had independent 
iterations were easy to adapt); the thread- 
ing model (directive-based codes were easier 
to adapt than Pthread codes, and JEEP was 
easiest of all); and the maturity of the tools 
(OpenMP compilers gave some teams prob- 
lems). 

We have focused here on ease-of-use rather 
than performance. Our initial information 
suggests little difference in performance be- 
tween explicit threading and directives for the 
same code. We plan to examine performance 
differences between the different models in the 
near future. 

Acknowledgements 

We thank the code developers who shared 
their experiences with us and reviewed this pa- 
per for accuracy: Bruce Curtis, Noah Elliott, 
Franqois Gygi, Ulf Hannebutte, Marty Mari- 
nak, Mike Nemanic, Tim Pierce, Brian Pud- 
liner, Dan Quinlan, and Debbie Walker. 

References 

[l] The ASCI sPPM benchmark code. http: 
//www.llnl.gov/asci-benchmarks/ 
asci/limited/ppm/asci_sppm.html. 

6 

PI 

PI 

PI 

PI 

PI 

PI 

D. BROWN, W. HENSI-IAW, AND 
D. QUINLAN, Overture: An object- 
oriented framework for solving partial 
differential equations, in Proceedings 
of the First International Scientific 
Computing in Object-Oriented Parallel 
Environments (ISCOPE) Conference, 
December 1997. 

P. N. BROWN, B. CHANG, M. R. 
DORR, U. R. HANEBUTTE, AND 
C. S. WOODWARD, Performing three- 
dimensional neutral particle transport 
calculations on tera scale computers, in 
High Performance Computing ‘99 (part 
of 1999 Advanced Simulation Technolo- 
gies Conferece), San Diego, CA, April 
1999. 

P. N. BROWN, R. D. FALGOUT, AND 
J. E. JONES, Semicoarsening multigrid 
on distributed memory machines. To 
appear in the SIAM Journal on Scien- 
tific Computing special issue on the Fifth 
Copper Mountain Conference on Iterative 
Methods. Also available as Lawrence Liv- 
ermore National Laboratory technical re- 
port UCRL-JC-130720. 

F. GYGI, The JEEP manual, Lawrence 
Livermore National Laboratory, Liv- 
ermore, CA, August 1998. email: 
gygil@llnl.gov. 

INSTITUTE OF ELECTRICAL AND ELEC- 
TRONICS ENGINEERS, IEEE standard for 
information technology : portable op- 
erating system interface (POSH-Part 
1: System Application Program Interface 
(API), New York, 1996. 

INTERNATIONAL BUSINESS MA- 
CHINES CORPORTATION, Paral- 
lel ESSL Version 2 Release 1 .l 
Guide and Reference, Poughkeepsie, 
New York, November 1998. http : 
//www.rs6000.ibm.com/resource/aix- 
resource/sp-books/essl/. 



[8] OPENMP ARCHITECTURE REVIEW 
BOARD, OpenMP Fortran Applica- 
tion Program Interface, October 1997. 
http://www.openmp.org/. 

[9] M. SNIR, S. W. OTTO, S. Huss- 
LEDERMAN, D. W. WALKER, AND 
J. DONGARRA, MPI: The Complete Ref- 
erence, MPI Press, Cambridge, Mass., 
1996. 

[lo] Tulip: A portable parallel run-time class 
library. http://www.acl.lanl.gov/ 
tulip/. 


